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1. Introduction

M-theory in eleven dimensions [1, 2] unifies all the five perturbative superstring theories

in ten dimensions and it should be reduced to 11-dimensional supergravity theory in its

low energy limit. Supermembrane in eleven dimensions [3] is believed to play an important

role to understand the dynamics of M-theory. In fact, it was shown that the wrapped

supermembrane on R
10 × S1 leads to the type IIA fundamental strings in the shrinking

limit of S1, or by means of the double dimensional reduction [4]. On the other hand, type

IIA superstring theory on R
9 × S1 is equivalent via T-duality to the type IIB superstring

theory on R
9 × S̃1, where S̃1 is the dual circle whose radius is inversely related to the one

of the S1 [5, 6]. And the shrinking S1 limit of the type IIA superstring theory on R
9 × S1

leads to the type IIB superstring theory in R
10. Accordingly, M-theory on R

9 × T 2 in the

shrinking volume limit of T 2 is reduced to the type IIB superstring theory in R
10 [7]. It was

shown that the type IIB superstring theory contains a bound state of p fundamental strings

and q D1-branes (D-strings), which is called a (p, q)-string [8, 9]. It was pointed out that the

supermembrane wrapped p times around a compactified direction and q times around the

other compactified direction of the target-space is reduced to a (p, q)-string [8]. Recently,

– 1 –



J
H
E
P
1
0
(
2
0
0
7
)
0
5
3

type IIB (p, q)-string action was deduced directly from the wrapped supermembrane action

on R
9 × T 2 adopting the double dimensional reduction and T-duality [10], in which the

reduced supermembrane is coupled to both the RR and NSNS 2-forms and it has the correct

tension of (p, q)-string.

Supermembrane theory is self-interacting and it has continuous energy spectrum [11].

This implies that it is inherently multi-body and has no coupling constant. Thus we cannot

directly adopt the ordinary canonical quantization procedure to the supermembrane the-

ory. In order to handle the supermembrane the matrix regularization was introduced as a

“quantization” procedure of the supermembrane [12, 13]. Matrix theory [14] is described by

N ×N matrices which can be thought of as the spatial component of 10-dimensional super

Yang-Mills fields after reducing to 1+0 dimension. This supersymmetric quantum mechan-

ical system is interpreted as the low energy effective theory of D0-branes (D-particles). And

it was conjectured that the N → ∞ limit of the system captures all the degrees of freedom

of M-theory in the infinite momentum frame.

Matrix theory compactified on S1 leads to matrix string theory [15 – 17] through the

T-duality prescription [18]. And hence matrix string theory can be thought of as (1+1)-

dimensional super Yang-Mills theory describing the low energy effective theory of D-strings.

It is also conjectured to give a non-perturbative definition of the type IIA superstring

theory. Similarly, the matrix regularization of wrapped supermembrane on R
9×S1 leads to

matrix string theory [19 – 21]. Furthermore, the matrix regularization procedure of wrapped

supermembrane on R
9×T 2 was introduced [22] and it was shown that the regularized theory

is T-dual to (2+1)-dimensional super Yang-Mills theory [22] which is low energy effective

theory of D2-branes.

The purpose of this paper is to deduce matrix (p, q)-strings directly from a matrix-

regularized lightcone supermembrane compactified on a 2-torus referring to the analysis in

ref. [10]. In addition, following the lines of [22], we will obtain the (2+1)-dimensional super

Yang-Mills theory in a curved background from the matrix regularized wrapped superme-

mbrane and we examine the duality in the dimensionally reduced type II string. We should

note that the curved background fields are not mapped to matrix-valued background fields,

or they are proportional to the unit matrix in the matrix regularization. The background

plays the role of probing the membrane or (p, q)-string. That is, we shall see that both the

NSNS and RR 2-forms are coupled to the matrix regularized (p, q)-string.

The plan of this paper is as follows. In section 2 we mainly review the matrix regu-

larization of the lightcone wrapped supermembrane on R
9 × T 2 [22] to fix the notations,

which are used in the following sections. In section 3 we will consider a lightcone wrapped

supermembrane compactified on a 2-torus in a curved background and apply matrix reg-

ularization technique to it. Then we adopt the double dimensional reduction technique

and derive the Green-Schwarz (p, q)-string. In section 4 we also start with the wrapped

supermembrane. Then we apply the matrix regularization technique with a suitable choice

of the matrix representation to give a standard form of super Yang-Mills action in a curved

background and we consider the SL(2, R) transformation and type IIB string duality. The

section 5 is devoted to summary and discussion.
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2. Matrix-regularized wrapped supermembrane in flat background

The 11-dimensional supermembrane in the lightcone gauge1 is given by (only bosonic de-

grees of freedom are presented here)

S =
LT

2

∫

dτ

∫ 2π

0
dσ1dσ2

[

(DτX
M )2 − 1

2L2
{XM ,XN }2

]

, (2.1)

DτX
M = ∂τX

M − 1

L
{A,XM }, (2.2)

{A,B } ≡ ǫij∂σiA∂σj B , (2.3)

where ∂τ = ∂/∂τ , ∂σi = ∂/∂σi, i, j = 1, 2, ǫ12 = −ǫ21 = 1, ǫ11 = ǫ22 = 0, M,N =

1, 2, · · · , 9, XM is the target-space coordinates and A is the gauge field, T is the tension of

the supermembrane and L is an arbitrary parameter of mass dimension −1.2 This theory

has the area preserving diffeomorphisms (APD) of the spacesheet as a residual symmetry.

Note that L can be changed for L′ by a simple rescaling of τ → (L/L′) τ .

Let us consider the wrapped supermembrane on R
9 × T 2 taking X8 and X9 as the

coordinates of the two cycles of the T 2. Then the target-space coordinates XM and the

gauge A are expanded as3

X9(σ1, σ2) = w1L1σ
2 +

∞
∑

k1,k2=−∞
Y 1

(k1,k2)
eik1σ1+ik2σ2

= w1L1σ
2 + Y 1(σ1, σ2), (2.4)

X8(σ1, σ2) = w2L2σ
1 +

∞
∑

k1,k2=−∞
Y 2

(k1,k2)
eik1σ1+ik2σ2 ≡ w2L2σ

1 + Y 2(σ1, σ2), (2.5)

Xm(σ1, σ2) =

∞
∑

k1,k2=−∞
Xm

(k1,k2)
eik1σ1+ik2σ2

, (2.6)

A(σ1, σ2) =

∞
∑

k1,k2=−∞
A(k1,k2) eik1σ1+ik2σ2

, (2.7)

where m = 1, 2, · · · , 7, L1 and L2 are the radii of the two cycles of T 2 and w1, w2 (6= 0) are

integers. These fields satisfy the periodicity conditions,

X9(σ1, σ2 + 2π) = 2πw1L1 + X9(σ1, σ2) , (2.8)

X8(σ1, σ2 + 2π) = X8(σ1, σ2) , (2.9)

X9(σ1 + 2π, σ2) = X9(σ1, σ2) , (2.10)

X8(σ1 + 2π, σ2) = 2πw2L2 + X8(σ1, σ2) , (2.11)

Xm(σ1 + 2π, σ2) = Xm(σ1, σ2 + 2π) = Xm(σ1, σ2) , (2.12)

A(σ1 + 2π, σ2) = A(σ1, σ2 + 2π) = A(σ1, σ2) . (2.13)

1In this paper, we consider only toroidal membranes. Precisely speaking, in this case, we need to impose

the global constraints associated with the information of the global topology [23].
2The mass dimensions of the world-volume parameters, τ, σ1 and σ2, are 0.
3The τ -dependence is not written explicitly for all the variables.
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These represent the supermembrane wrapping w1-times around one of the two compact

directions X9 and w2-times around the other direction X8. We call these two cycles (0, 1)-

and (1, 0)-cycles, respectively. Plugging eqs. (2.4)–(2.7) into the covariant derivatives and

the Poisson brackets, we have

Fτσ1 ≡ DτX
9 = ∂τY

1 − w1L1

L
∂σ1A − 1

L
{A,Y 1 } , (2.14)

Fτσ2 ≡ DτX
8 = ∂τY

2 +
w2L2

L
∂σ2A − 1

L
{A,Y 2 } , (2.15)

Fσ1σ2 ≡ 1

L
{X8,X9 } =

w1w2L1L2

L
+

w1L1

L
∂σ1Y 2

+
w2L2

L
∂σ2Y 1 +

1

L
{Y 2, Y 1 } , (2.16)

DτXm = ∂τX
m − 1

L
{A,Xm } , (2.17)

Dσ1Xm ≡ 1

L
{X9,Xm } = −w1L1

L
∂σ1Xm +

1

L
{Y 1,Xm } , (2.18)

Dσ2Xm ≡ 1

L
{X8,Xm } =

w2L2

L
∂σ2Xm +

1

L
{Y 2,Xm } . (2.19)

Thus, the action (2.1) is rewritten by

S =
LT

2

∫

dτ

∫ 2π

0
dσ1dσ2

[

F 2
τσ1 + F 2

τσ2 − F 2
σ1σ2

+(DτXm)2 − (Dσ1Xm)2 − (Dσ2Xm)2 − 1

2L2
{Xm,Xn }2

]

. (2.20)

2.1 The matrix representation

Here we shall consider the matrix regularization of the wrapped supermembrane on R
9×T 2,

eqs. (2.1)–(2.7). The procedure for the matrix regularization is the following [22]: (i) Intro-

duce the noncommutativity on the spacesheet of supermembrane, or replace the product of

functions on the spacesheet to the star-product. (ii) If possible, find the central elements of

the star-commutator algebra and truncate the generators of the algebra consistently. (iii)

Give a matrix representation of the (truncated) star-commutator algebra.

The star-commutators algebra for the set of generators {eik1σ1+ik2σ2
, σ1, σ2 | k1, k2 ∈ Z}

is given by [20 – 22, 24]

[ eik1σ1+ik2σ2
, eik′

1σ1+ik′

2σ2
]∗ = −2i sin

( π

N
ǫijkik

′
j

)

ei(k1+k′

1)σ1+i(k2+k′

2)σ
2
, (2.21)

[σ1, eik1σ1+ik2σ2
]∗ = −2πk2

N
eik1σ1+ik2σ2

, (2.22)

[σ2, eik1σ1+ik2σ2
]∗ =

2πk1

N
eik1σ1+ik2σ2

, (2.23)

[σ1, σ2 ]∗ = i
2π

N
. (2.24)
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Since we can not find a central element of the algebra eqs. (2.21)–(2.24), the truncation is

not possible in T 2 compactified case. The generators are represented by N × N matrices

with two continuous parameters θ1, θ2 [22],4

ei(u1N+v1)σ1+i(u2N+v2)σ2 → ei(u1N+v1)θ1/Ne−i(u2N+v2)θ2/Nλ−v1v2/2 V v2 Uv1 , (2.25)

σ2 → −2πi∂θ1IN , (2.26)

σ1 → −2πi∂θ2IN +
θ1

N
IN , (2.27)

where λ = ei2π/N , u1, u2 ∈ Z, v1, v2 = 0,±1,±2, · · · ,±M,5 IN is the N × N unit matrix

and U, V are the N × N clock and shift matrices, respectively,

U =



















1
0

λ

λ2

. . .

0 λN−1



















, V =

















0 1

0 1
...

. . .
. . .

0 0 1

1 0 · · · 0

















. (2.28)

These have the following properties,

UN = V N = IN , V U = λUV . (2.29)

Then, the functions X9,X8,Xm and A of σ1 and σ2,6 or eqs. (2.4)–(2.7) are represented

by the N × N matrices

X9(σ1, σ2) → −2πiw1L1∂θ1IN + Y 1(θ1, θ2) , (2.30)

X8(σ1, σ2) → −2πiw2L2∂θ2IN +
w2L2

N
θ1IN + Y 2(θ1, θ2), (2.31)

Xm(σ1, σ2) → Xm(θ1, θ2), (2.32)

A(σ1, σ2) → A(θ1, θ2), (2.33)

where (Ξ represents Y 1, Y 2, Xm and A)

Ξ(θ1, θ2) =
∑

u1,u2∈Z

M
∑

v1,v2=−M

Ξ(u1N+v1,u2N+v2)e
i(u1N+v1)θ1/Ne−i(u2N+v2)θ2/Nλ−v1v2/2V v2Uv1 .

(2.34)

Note that Ξ(θ1, θ2) satisfies the boundary condition [22],

Ξ(θ1 + 2π, θ2) = V Ξ(θ1, θ2)V †, Ξ(θ1, θ2 + 2π) = U Ξ(θ1, θ2)U †. (2.35)

4Note that the parameters θi are, in principle, independent of the spacesheet coordinates σ1, σ2.
5We assume N odd, N = 2M + 1 and we have parametrized ki as ki = uiN + vi (i = 1, 2).
6Of course they are also functions of τ . We just do not mention it explicitly.
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Furthermore, the Poisson bracket and the double integrals are represented as follows,

{ · , · } → −i
N

2π
[ · , · ] , (2.36)

∫ 2π

0
dσ1dσ2 ∗ → 1

N

∫ 2π

0
dθ1dθ2 Tr[ ∗ ] . (2.37)

Thus, from these results with a rescaling τ → τ/N , the matrix-regularized action of the

wrapped membrane on R
9 × T 2 is given by

S2+1 =
LT

2

∫

dτ

∫ 2π

0
dθ1dθ2 Tr

[

(Fτθ1)2 + (Fτθ2)2 − (Fθ1θ2)2

+(DτX
m)2 − (Dθ1Xm)2 − (Dθ2Xm)2 +

1

2(2πL)2
[Xm,Xn ]2

]

, (2.38)

where

Fτθ1 = ∂τY 1 − w1L1

L
∂θ1A +

i

2πL
[A,Y 1 ] , (2.39)

Fτθ2 = ∂τY 2 − w2L2

L
∂θ2A +

i

2πL
[A,Y 2 ] , (2.40)

Fθ1θ2 =
w1w2L1L2

NL
IN +

w1L1

L
∂θ1Y 2 − w2L2

L
∂θ2Y 1 +

i

2πL
[Y 1, Y 2 ] , (2.41)

DτX
m = ∂τXm +

i

2πL
[A,Xm ] , (2.42)

Dθ1Xm =
w1L1

L
∂θ1Xm +

i

2πL
[Y 1,Xm ] , (2.43)

Dθ2Xm =
w2L2

L
∂θ2Xm +

i

2πL
[Y 2,Xm ] . (2.44)

Note that the fields Y 1, Y 2,Xm and A have mass dimension −1 and the parameters τ, θ1, θ2

have mass dimension 0. We also rewrite the action (2.38) to the standard form of Yang-

Mills theory. In order to adjust the mass dimensions of the fields and the parameters, we

rewrite them by introducing some dimensionful constants,

Y 1(θ1, θ2) → αA1(x
1, x2) , (2.45)

Y 2(θ1, θ2) → αA2(x
1, x2) , (2.46)

Xm(θ1, θ2) → αφm(x1, x2) , (2.47)

A(θ1, θ2) → αA0(x
1, x2) , (2.48)

θ1 → x1/Σ1 , (2.49)

θ2 → x2/Σ2 , (2.50)

τ → x0/Σ , (2.51)

where α has mass dimension −2 and Σ1,Σ2 and Σ have mass dimension −1. Then, the

– 6 –



J
H
E
P
1
0
(
2
0
0
7
)
0
5
3

action (2.38) is rewritten by

S2+1 =
LT

2

1

Σ1Σ2Σ

∫

dx0

∫ 2πΣ1

0
dx1

∫ 2πΣ2

0
dx2 Tr

[

(Fτθ1)2 + (Fτθ2)2 − (Fθ1θ2)2

+ (DτXm)2 − (Dθ1Xm)2 − (Dθ2Xm)2 +
α4

2(2πL)2
[φm, φn ]2

]

, (2.52)

Fτθ1 = Σα∂0A1 −
L1

L
Σ1α∂1A0 + i

α2

2πL
[A0, A1 ], (2.53)

Fτθ2 = Σα∂0A2 −
L2

L
Σ2α∂2A0 + i

α2

2πL
[A0, A2 ], (2.54)

Fθ1θ2 =
L1L2

NL
IN +

L1

L
Σ1α∂1A2 −

L2

L
Σ2α∂2A1 + i

α2

2πL
[A1, A2 ], (2.55)

DτX
m = Σα∂0φ

m + i
α2

2πL
[A0, φ

m ], (2.56)

Dθ1Xm =
L1

L
Σ1α∂1φ

m + i
α2

2πL
[A1, φ

m ], (2.57)

Dθ2Xm =
L2

L
Σ2α∂2φ

m + i
α2

2πL
[A2, φ

m ], (2.58)

where ∂0 ≡ ∂/∂x0 and ∂i ≡ ∂/∂xi. Here we have put w1 = w2 = 1 for simplicity. In order

to bring the field strength (2.53)–(2.55) into the standard form, we obtain the following

relations [22] 7

Σ =
α

2πL
, (2.59)

Σ1 =
α

2πL1
, (2.60)

Σ2 =
α

2πL2
. (2.61)

Then, we have obtained the standard form of a bosonic part of (2+1)-dimensional maxi-

mally supersymmetric U(N) Yang-Mills theory with the constant magnetic flux,

S2+1 =
1

2g2
YM

∫

dx0

∫ 2πΣ1

0
dx1

∫ 2πΣ2

0
dx2 Tr

[

(F01)
2 + (F02)

2 − (F12)
2

+ (D0φ
m)2 − (D1φ

m)2 − (D2φ
m)2 +

1

2
[φm, φn ]2

]

, (2.62)

F01 = ∂0A1 − ∂1A0 + i[A0, A1 ], (2.63)

F02 = ∂0A2 − ∂2A0 + i[A0, A2 ], (2.64)

F12 = f12 + ∂1A2 − ∂2A1 + i[A1, A2 ], (2.65)

Dαφm = ∂αφm + i[Aα, φm ], (α = 0, 1, 2) (2.66)

with the boundary conditions (Ξ stands for Aα and φm),

Ξ(x1 + 2πΣ1, x
2) = V Ξ(x1, x2)V † , (2.67)

Ξ(x1, x2 + 2πΣ2) = UΞ(x1, x2)U † , (2.68)

7Eqs. (2.60) and (2.61) represent the T-duality which relates the radii (L1, L2) of the 2-torus in M-theory

and the those (Σ1, Σ2) of the dual 2-torus in the super Yang-Mills theory. We should stress that we have

obtained the same relations from the different viewpoint [22].

– 7 –
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where the constant magnetic flux f12 is given by

f12 =
1

2πNΣ1Σ2
IN , (2.69)

and gYM is the gauge coupling constant of mass dimension one half, which is given by

g2
YM = (2π)−2(Σ1Σ2)

−1/2 (L1L2)
−3/2 T−1. (2.70)

We also define the dimensionless gauge coupling constant ḡYM by

ḡ2
YM ≡ g2

YM (2πΣ12πΣ2)
1/2 = (2π)−1(L1L2)

−3/2 T−1 =
2πl311

(L1L2)3/2
, (2.71)

where l11 is the 11-dimensional Planck length related to T by T−1 = (2π)2l311. This dimen-

sionless gauge coupling constant exactly agrees with that obtained in ref. [26] including the

numerical constant.8 Note that in refs. [26] the super Yang-Mills theory was regarded as

the low energy effective theory of D-branes in deriving such a relation, while we have taken

a different approach of matrix regularization of supermembrane in this section. Further-

more, the constant magnetic flux f12 in eq. (2.65) agrees with that obtained in refs. [25, 26]

including the numerical constant.

2.2 The general matrix representation

We have adopted a simple representation (2.25)–(2.27) for the star-commutator alge-

bra (2.21)–(2.24) to bring the wrapped supermembrane action to the standard form of

super Yang-Mills theory in eqs. (2.62)–(2.66). However, we could adopt more general rep-

resentation of the algebra

eik1σ1+ik2σ2 → eikiT i
j θj/Nλ−v1v2/2 V v2 Uv1 , (2.72)

σ2 → ci∂θiIN + diθ
iIN , (2.73)

σ1 → ei∂θiIN + fiθ
iIN . (2.74)

In fact, we can easily check that this is also a representation of the star-commutator algebra

with following constraints

iki T i
j ej = −2πk2 , (2.75)

iki T i
j cj = 2πk1 , (2.76)

eidi − cifi =
2πi

N
, (2.77)

where the matrix T i
j is given by

T i
j =

2πi

(c1e2 − c2e1)

(

−e2 e1

−c2 c1

)

. (2.78)

Note that in such general representation the resultant action is not always in the standard

form of the super Yang-Mills action. In section 4 we shall consider the supermembrane

wrapped around the general two-cycles of T 2. Then we shall use this general representation

to bring the wrapped supermembrane action into the standard super Yang-Mills action.

8Note that the parameters Σ1, Σ2 and L1, L2 in ref. [26] represent the circumferences but not the radii.
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3. Wrapped supermembrane in curved background

In this section we consider the supermembrane wrapped around nontrivial two cycles of T 2

and apply matrix regularization procedure to it. Then we perform the double dimensional

reduction and derive the matrix (p, q)-strings.

3.1 Setup

The bosonic part of the lightcone supermembrane in 11-dimensional curved background

is given in ref. [27, 28]. It was conjectured in ref. [29] to identify a lightcone component

of the background 3-form A−MN with the noncommutative parameter of the 2-torus. We

need more study on this issue, however, since our goal in this section is to deduce the

Green-Schwarz (p, q)-string action from the matrix-regularized wrapped supermembrane by

the double dimensional reduction, we shall put the background fields along the lightcone

directions zero. Then the action in ref. [27] is reduced to contain only fields with the

transverse indices,

S =
LT

2

∫

dτ

∫ 2π

0
dσ1dσ2

[

(DτXM )2

− 1

2L2
{XM ,XN }2 +

1

L
DτXMAMNP {XN ,XP }

]

, (3.1)

where AMNP is the 3-form field, XM is target-space coordinates and the transverse indices

M,N,P = 1, 2, · · · , 9 are contracted by the target-space metric GMN . Considering the line

element on a 2-torus

ds2
T 2 = Guv dXudXv =

(

G88 −
(G89)

2

G99

)

(dX8)2 + G99

(

dX9 +
G89

G99
dX8

)2

, (3.2)

where u, v = 8, 9, we shall choose the target-space coordinates satisfying the following

boundary conditions [10]
√

G99 X9(σ1, σ2 + 2π) = 2πw1L1p +
√

G99 X9(σ1, σ2) , (3.3)
√

G88 −
(G89)2

G99
X8(σ1, σ2 + 2π) = 2πw1L2q +

√

G88 −
(G89)2

G99
X8(σ1, σ2) , (3.4)

√

G99 X9(σ1 + 2π, σ2) = 2πw2L1r +
√

G99 X9(σ1, σ2) , (3.5)
√

G88 −
(G89)2

G99
X8(σ1 + 2π, σ2) = 2πw2L2s +

√

G88 −
(G89)2

G99
X8(σ1, σ2) . (3.6)

or

X9(σ1, σ2) = R1 (w1pσ2 + w2rσ
1) + Y 1(σ1, σ2) , (3.7)

X8(σ1, σ2) = R2 (w1qσ
2 + w2sσ

1) + Y 2(σ1, σ2) , (3.8)

where9

pr + qs = 0, ps − qr ≡ nc > 0, (p, q, r, s ∈ Z, w1 ∈ N\{0} , w2 ∈ Z\{0}) (3.9)

9We may assume nc > 0 and w1 > 0 without loss of generality since we can flip the signs of (p, q) →

(−p,−q) (for w1) and (r, s) → (−r,−s) (for nc) if necessary. Furthermore, we may see that eq. (3.9) leads

to (r, s) = n(−q, p) (n ∈ N).
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and10

R1 ≡ L1√
G99

, R2 ≡ L2
√

G88 − (G89)2

G99

. (3.10)

Y i (i = 1, 2) and the other fields in eqs. (2.6) and (2.7) satisfy the periodic boundary

conditions, Y 1(σ1 + 2π, σ2) = Y 1(σ1, σ2 + 2π) = Y 1(σ1, σ2), etc.. The above expressions

represent that the supermembrane is wrapping w1p-times around one of the two compact

directions (X9) and w1q-times around the other direction (X8), or w1-times around (p, q)-

cycle along the σ2-direction on the worldsheet. And also it is wrapping w2-times around

(r, s)-cycle along the σ1-direction. These two cycles are orthogonal to each other and

intersect at least once. Thus, this wrapped supermembrane is expected to give the (p, q)-

string [8, 10]. In fact, we shall see below that the (p, q)-string comes out through the double

dimensional reduction.

3.2 Matrix regularization and double dimensional reduction

We shall follow the matrix regularization procedure presented in section 2 [22] and then

consider the double dimensional reduction [4] with the matrices. One comment is in order:

In this paper we do not consider the matrix regularization of the background fields, which

play the role of probing the membrane XM and hence the background fields GMN and

AMNP are proportional to the unit matrix in the matrix regularized action. The double

dimensional reduction is carried out along the (p, q)-cycle [10], however, we should be

careful to really deduce the (p, q)-string. First we should notice the followings. Once we

intend to deduce type IIB superstring we shall consider the shrinking volume limit of the

2-torus keeping the ratio of the radii finite,

L1

L2
≡ gb : finite. (L1, L2 → 0) (3.11)

and the ratio is the type IIB coupling constant [7]. On the other hand, by using the

relations between the 11-dimensional supergravity and 9-dimensional type IIB background

fields in eqs. (B.18)–(B.20) [30, 31] we have
√

G88 − (G89)2

G99

G99
= e−ϕ =

1

gb
=

L2

L1
, (3.12)

where ϕ is a background of the type IIB dilaton. Thus eq. (3.12) leads to

R1 = R2 ≡ RB . (3.13)

Then we set (3.13) hereafter in this section.11

Next we determine the spacetime directions to align with the worldvolume coordinate,

or we fix the gauge. We define Xy and Xz by an SO(2) rotation of the target-space [10]
(

Xz

Xy

)

= O(p,q)

(

X9

X8

)

, (3.14)

10We shall see R1 = L1 e−2φ/3 from eq. (B.1) and hence M/IIA-relation, or 11d/IIA-SUGRA-relation,

leads to R1 = ℓ11 (11-dimensional Planck length).
11We do not set eq. (3.13) in section 4.
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where

O(p,q) =
1

cpq

(

p q

−q p

)

≡
(

p̂ q̂

−q̂ p̂

)

∈ SO(2), cpq ≡
√

p2 + q2 . (3.15)

Then Xz- and Xy-directions are given by

Xz = w1cpqRBσ2 + p̂ Y 1 + q̂ Y 2 ≡ C1 σ2 + Y z , (3.16)

Xy =
w2ncRB

cpq
σ1 − q̂ Y 1 + p̂ Y 2 ≡ C2 σ1 + Y y , (3.17)

and they are aligned with (p, q)- and (r, s)-cycles, respectively. The transverse metric and

3-form are transformed as

G̃UV = GMN
∂XM

∂XU

∂XN

∂XV
, ÃUV W = AMNP

∂XM

∂XU

∂XN

∂XV

∂XP

∂XW
, (3.18)

where U, V,W = 1, 2, · · · , 7, y, z. We shall parametrize G̃UV as (cf. eq. (B.1))

G̃UV =









1√
G̃zz

g̃mn + 1
G̃zz

G̃mzG̃nz
1√
G̃zz

g̃my + 1
G̃zz

G̃mzG̃yz G̃mz

1√
G̃zz

g̃yn + 1
G̃zz

G̃yzG̃νz
1√
G̃zz

g̃yy + 1
G̃zz

G̃yzG̃yz G̃yz

G̃νz G̃yz G̃zz









. (3.19)

Here we shall introduce a noncommutativity on spacesheet (2.21)–(2.24) and give a

matrix representation as is given in eqs. (2.25)–(2.27), (2.36) and (2.37). The double

dimensional reduction on the matrices is carried out by imposing the following conditions

on the oscillators (Ξ stands for Xm, Y y and A) and background fields,

Y z = 0, ∂θ2Ξ = 0 , (3.20)

and

∂θ2G̃UV = ∂θ2ÃUV W = 0 . (3.21)

Then the oscillators are reduced to the diagonal matrices

Ξ(θ1) =
∑

u1∈Z

M
∑

v1=−M

Ξ(u1N+v1,0) ei(u1N+v1)θ1/N Uv1 , (3.22)

and the commutators between them automatically vanish. Under the double dimensional

reduction, the non-zero components in the action come from the followings,

DτX
z = −C1

L
∂θ1A , (3.23)

DτXy = ∂τY , (3.24)

DτX
m = ∂τX

m , (3.25)

−i

2πL
[Xz ,Xy ] = −C1

L
∂θ1Y , (3.26)

−i

2πL
[Xz ,Xm ] = −C1

L
∂θ1Xm , (3.27)
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where Y ≡ Y y + (C2 θ1/N)IN . Then the action (3.1) is rewritten by

S =
2πTL

2

∫

dτ

∫ 2π

0
dθ1 Tr

[(

g̃mn
√

G̃zz

+
G̃mzG̃nz

G̃zz

)

∂0X
m∂0X

n

+ 2

(

g̃ym
√

G̃zz

+
G̃mzG̃yz

G̃zz

)

∂0X
m∂0Y

− 2C1

L

(

G̃mz∂0X
m∂1A + G̃yz∂0Y ∂1A

)

+ G̃yy(∂0Y )2 +

(

C1

L

)2

G̃zz(∂1A)2

−
(

C1

L

)2 √

G̃zz

(

g̃yy(∂1Y )2 + 2g̃my∂1X
m∂1Y + g̃mn∂1X

m∂1X
n
)

+
2C1

L
(Anmz∂0X

n∂1X
m + Amzyǫ

ab∂aY ∂bX
m)

]

, (3.28)

where a, b = 0, 1 and we adopt the notation of (∂0, ∂1) ≡ (∂τ , ∂θ1) only in section 3. Then,

solving the field equation of A and rescaling τ → τL/(C1

√

G̃zz) we obtain the double

dimensionally reduced action

S =
2πT

2

∫

dτ

∫ 2π

0
dθ1C1Tr

[

ηab(g̃mn∂aX
m∂bX

n + 2g̃my∂aX
m∂bY + g̃yy∂aY ∂bY )

+ 2(Ãnmz∂τX
n∂1X

m + Ãmzyǫ
ab∂aY ∂bX

m)

]

. (3.29)

3.3 (p, q)-string from wrapped supermembrane

In this subsection we derive the (p, q)-string action from the reduced supermembrane action

in eq. (3.29). The action has an abelian isometry associated with the other compactified Y -

direction, we can make a dual transformation as is the case with sigma models. Introducing

a variable Ỹ , which is seen to be dual to Y , eq. (3.29) can be rewritten in a classically

equivalent form

S =
2πT

2

∫

dτ

∫ 2π

0
dθ1 C1 Tr

[

ηab(g̃mn∂aX
m∂bX

n + 2g̃my∂aX
mGb + g̃yyGaGb)

+2(Ãnmz∂τXn∂1X
m + Ãmzyǫ

abGa∂bX
m) + 2ǫabỸ ∂aGb

]

, (3.30)

since the variation w.r.t. Ỹ leads to ǫab∂aGb = 0 or Ga = ∂aY and hence eq. (3.29) can be

reproduced.12 On the other hand, assuming that all the fields are independent of Ga (or

Y ), the variation w.r.t. Ga leads to

Ga =
1

g̃yy

{

ηabǫ
cb∂cỸ − g̃my∂aX

m − Amzy(∂1X
mη0a − ∂0X

mηa1)
}

, (3.31)

12We assume that the background fields are independent of Ỹ in eq. (3.30).
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and hence we have

S =
2πT

2

∫

dτ

∫ 2π

0
dθ1 C1 Tr

[(

g̃mn − g̃my g̃ny − ÃmzyÃnzy

g̃yy

)

ηab∂aX
m∂bX

n

+ 2
Ãmzy

g̃yy
ηab∂aX

m∂bỸ +
1

g̃yy
ηab∂aỸ ∂bỸ

+

(

Ãmnz + 2
Ãmzy g̃ny

g̃yy

)

ǫab∂aX
m∂bX

n + 2
g̃my

g̃yy
ǫab∂aỸ ∂bX

m

]

. (3.32)

Now that we consider T-dual for the background fields in eq. (3.29) (or eq. (3.32)).

Since we regard X9 (not Xz) as the 11th direction, we should take T-dual along the X8-

direction to transform type IIA superstring theory to type IIB superstring theory. Then

we can rewrite the background fields in terms of those of the type IIB supergravity as

follows [30, 31](cf. appendix B),

g̃my =
B

(pq)
8m

88
, (3.33)

g̃yy =
1

88
√

(p̂ + q̂l)2 + e−2ϕq̂2
, (3.34)

g̃mn =
√

(p̂ + q̂l)2 + e−2ϕq̂2

(

mn − 8m8n

88
+

B
(pq)
8m B

(pq)
8n

88

)

, (3.35)

Ãmnz =
√

(p̂ + q̂l)2 + e−2ϕq̂2

(

B(pq)
mn +

2

88
B

(pq)
8[m n]8

)

, (3.36)

Ãmyz = −8m

88
=

√

(p̂ + q̂l)2 + e−2ϕq̂2 g̃yy8m , (3.37)

where B
(1)
IJ and B

(2)
IJ are the NSNS and RR second-rank antisymmetric tensors, respectively,

IJ are the metric in type IIB supergravity, l = G89/G99 = A8 and

B
(pq)
IJ =

p̂ B
(1)
IJ + q̂ B

(2)
IJ

√

(p̂ + q̂l)2 + e−2ϕq̂2
, (3.38)

where I, J = 1, 2, · · · , 8. Then, plugging these equations into eq. (3.32) we have

S =
2πT

2

∫

dτ

∫ 2π

0
dθ1 C1

√

(p̂ + q̂l)2 + e−2ϕq̂2

× Tr
[

ηab∂aX̃
I∂bX̃

J IJ + ǫab∂aX̃
I∂bX̃

JB
(pq)
IJ

]

, (3.39)

where we have defined X̃I ≡ (Xm, Ỹ ). Once we regard X9 as the 11th direction, the type

IIA string tension Ts is given by 2πL1T/
√

G99 [8] since the 11-dimensional metric GMN is

converted to the type IIA metric gIJ by the relation GIJ = gIJ/
√

G99. Also, if we assume

that l and ϕ are constant and hence eϕ = gb, we have

2πTC1

√

(p̂ + q̂l)2 + e−2ϕq̂2 = w1Ts

√

(p + ql)2 + e−2ϕq2 ≡ w1Tpq (3.40)

where Tpq is the tension of a (p, q)-string in type IIB superstring theory [8]. In particular,

we see that both of the NSNS and RR antisymmetric tensors couple to X̃I in eq. (3.39),
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which implies that the reduced action (3.39) is, in fact, that of the (p, q)-strings. Note that

w1 is just the number of copies of the resulting (p, q)-string. If we set q to be zero and hence

take (p, q, r, s) = (1, 0, 0, 1), we have the fundamental strings in type IIB superstring theory.

On the other hand, (p, q, r, s) = (0, 1, 1, 0) leads to the strings which couple minimally with

the RR B-field, i.e., the D-strings.

4. Matrix-regularized action in curved background

In this section we perform the matrix regularization on the wrapped supermembrane in

curved background by adopting a suitable choice of matrix representation. As we mentioned

before, the background fields are to be proportional to the unit matrix in the matrix

regularization here. Then we derive the standard form of (2+1)-dimensional super Yang-

Mills action in the curved background.

4.1 Standard form of super Yang-Mills action

Let us start with the wrapped supermembrane (3.1) where X9,X8,Xm and A are given by

eqs. (3.7), (3.8), (2.6) and (2.7), respectively. In this section we assume that the background

metric is block-diagonal

GMN =

(

Gmn 0

0 Guv

)

. (4.1)

We shall perform the matrix regularization. The procedure is the same as before (cf.

subsection 2.1), however, we should be careful in the choice of matrix representation of the

algebra. In this case by using the general matrix representation in eqs. (2.72)–(2.74), we

shall search for the set of parameters which makes the matrix representations of X9 and

X8 similar to eqs. (2.30) and (2.31), respectively. In fact, we find that the choice of the

parameters

c1 = − 2πis

w1nc
, c2 =

2πir

w1nc
, e1 =

2πiq

w2nc
, e2 = − 2πip

w2nc
,

d1 = −w2r

N
, d2 = 0, f1 =

w1p

N
, f2 = 0, (4.2)

leads to the matrix representation

X9(σ1, σ2) → −2πiR1∂θ1IN + Y 1(θ1, θ2) , (4.3)

X8(σ1, σ2) → −2πiR2∂θ2IN +
w1w2ncR2

N
θ1IN + Y 2(θ1, θ2) , (4.4)

Xm(σ1, σ2) → Xm(θ1, θ2) , (4.5)

A(σ1, σ2) → A(θ1, θ2) , (4.6)

and the oscillation modes of the N×N matrices are give by (Ξ (θ1, θ2) stands for Y 1 (θ1, θ2),

Y 2 (θ1, θ2), Xm (θ1, θ2) and A (θ1, θ2))

Ξ(θ1, θ2) =
∑

u1,u2∈Z

M
∑

v1,v2=−M

Ξ(u1N+v1,u2N+v2) eiK1θ1/Ne−iK2θ2/N λ−v1v2/2 V v2Uv1 , (4.7)
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where

K1 = w1p(u1N + v1)− w2r(u2N + v2) , K2 = −w1q(u1N + v1) + w2s(u2N + v2) . (4.8)

Then, Ξ satisfies the boundary conditions

Ξ

(

θ1 +
2πs

w1nc
, θ2 − 2πr

w1nc

)

= V Ξ(θ1, θ2)V † , (4.9)

Ξ

(

θ1 − 2πq

w2nc
, θ2 +

2πp

w2nc

)

= U Ξ(θ1, θ2)U † , (4.10)

or

Ξ(θ1 + 2π, θ2) = Uw2rV w1p Ξ(θ1, θ2) (Uw2rV w1p)† , (4.11)

Ξ(θ1, θ2 + 2π) = Uw2sV w1q Ξ(θ1, θ2) (Uw2sV w1q)† , (4.12)

which express that the supermembrane wraps around (p, q)- and (r, s)-cycles. Furthermore,

since we have

[σ1, σ2 ]∗ → [ ci∂θi + diθ
i, ei∂θi + fiθ

i ] =
2πi

N
, (4.13)

1

N

∫

F
dθ1dθ2 Tr IN =

(2π)2

w1|w2|nc
, (4.14)

where F is a parallelogram generated by the two vectors, (2πs/(w1nc),−2πr/(w1nc)) and

(−2πq/(w2nc), 2πp/(w2nc)), the Poisson bracket and the double integral are represented

as

{ · , · } → −i
N

2π
[ · , · ] , (4.15)

∫ 2π

0
dσ1dσ2 ∗ → w1|w2|nc

N

∫

F
dθ1dθ2 Tr[ ∗ ]

(

=
1

N

∫ 2π

0
dθ1dθ2 Tr[ ∗ ]

)

. (4.16)

The first two terms of the action (3.1) are given by, with rescaling τ → τ/N ,

S2+1 =
w1|w2|ncLT

2

∫

dτ

∫

F
dθ1dθ2 Tr

[

G99(Fτθ1)2 + 2G89Fτθ1Fτθ2

+ G88(Fτθ2)2 − VT 2(Fθ1θ2)2 + (DτXm)2 − G99(Dθ1Xm)2

− 2G89GmnDθ1XmDθ2Xn − G88(Dθ2Xm)2 +
1

2(2πL)2
[Xm,Xn ]2

]

, (4.17)

where

Fτθ1 = ∂τY
1 − R1

L
∂θ1A +

i

2πL
[A,Y 1 ] , (4.18)

Fτθ2 = ∂τY
2 − R2

L
∂θ2A +

i

2πL
[A,Y 2 ] , (4.19)

Fθ1θ2 =
w1w2ncR1R2

NL
IN +

R1

L
∂θ1Y 2 − R2

L
∂θ2Y 1 +

i

2πL
[Y 1, Y 2 ] , (4.20)

DτX
m = ∂τX

m +
i

2πL
[A,Xm ] , (4.21)

Dθ1Xm =
R1

L
∂θ1X

m +
i

2πL
[Y 1,Xm ] , (4.22)

Dθ2Xm =
R2

L
∂θ2X

m +
i

2πL
[Y 2,Xm ] . (4.23)
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As before, we rewrite the matrix regularized action by introducing some dimensionful

constants to adjust the mass dimensions of the fields and the parameters,

Y 1(θ1, θ2) → α̂A1(x
1, x2) , (4.24)

Y 2(θ1, θ2) → α̂A2(x
1, x2) , (4.25)

Xm(θ1, θ2) → α̂φm(x1, x2) , (4.26)

A(θ1, θ2) → α̂A0(x
1, x2) , (4.27)

θ1 → x1/Σ̂1 , (4.28)

θ2 → x2/Σ̂2 , (4.29)

τ → x0/Σ̂ . (4.30)

where α̂ has mass dimension −2 and Σ̂1, Σ̂2 and Σ̂ have mass dimension −1 as in eqs. (2.45)–

(2.51). Then, in the same way as in subsection 2.1, in order to have the standard form of

the super Yang-Mills action, we should set

Σ̂ =
α̂

2πL
, (4.31)

Σ̂1 =
α̂

2πR1
, (4.32)

Σ̂2 =
α̂

2πR2
. (4.33)

Thus eqs. (4.17)–(4.23) are reduced to (we put α̂ = α)

S2+1 =
w1|w2|nc

g2
YM

∫

dx0

∫

F
dx1dx2

√

− detGαβ Tr

[

−1

4
GαβGγδFαγFβδ

− 1

2
GαβDαφmDβφnGmn +

1

4
GmpGnq[φ

m, φn ][φp, φq ]

]

, (4.34)

Fαβ = fαβ + ∂αAβ − ∂βAα + i[Aα, Aβ ] , (4.35)

Dαφm = ∂αφm + i[Aα, φm ] , (4.36)

where α, β, γ, δ = 0, 1, 2, the worldvolume metric Gαβ is

Gαβ =
(

Gαβ
)−1

, Gαβ =







−1 0 0

0 G99 G89

0 G89 G88






, (4.37)

the constant magnetic flux fαβ is

f01 = f02 = 0, f12 =
w1w2nc

2πN Σ̂1Σ̂2

IN , (4.38)

and the region F in the spacesheet (x1, x2) is a parallelogram spanned by the two vec-

tors (2πΣ̂1s/(w1nc),−2πΣ̂2r/(w1nc)) and (−2πΣ̂1q/(w2nc), 2πΣ̂2p/(w2nc)). The matrices

satisfy the boundary conditions (Ξ stands for Aα and φm)

Ξ

(

x1 +
2πΣ̂1s

w1nc
, x2 − 2πΣ̂2r

w1nc

)

= V Ξ(x1, x2)V † , (4.39)

Ξ

(

x1 − 2πΣ̂1q

w2nc
, x2 +

2πΣ̂2p

w2nc

)

= U Ξ(x1, x2)U † , (4.40)
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or

Ξ(x1 + 2πΣ̂1, x2) = Uw2rV w1p Ξ(x1, x2) (Uw2rV w1p)† , (4.41)

Ξ(x1, x2 + 2πΣ̂2) = Uw2sV w1q Ξ(x1, x2) (Uw2sV w1q)† . (4.42)

Note that the gauge coupling constant gYM is the same as in the flat background case in

eq. (2.70). The third term of the action (3.1) is reduced to

Sf =
w1|w2|nc

2g2
YM

∫

dx0

∫

F
dx1dx2

√

− detGαβ Tr
[

−iD0φ
lÂlmn[φm, φn ]

+ 2D0φ
m(D1φ

nÂmn9 + D2φ
nÂmn8) − i(F01Âmn9 + F02Âmn8)[φ

m, φn ]

+ ǫαβγFαβDγφm Âm89

]

. (4.43)

One comment is in order: In this subsection we have derived the matrix regularized action

by using the general matrix representation in eqs. (2.72)–(2.74). Of course, the same

matrix regularized action can be obtained when we first transform X9 and X8 in eqs. (3.7)

and (3.8) by a GL(2, R) matrix as

(

X9

X8

)

→
(

X̃9

X̃8

)

=
1

nc

(

s −rR1/R2

−qR2/R1 p

)(

X9

X8

)

(4.44)

and then perform the regularization as in subsection 2.1.

4.2 Duality

In this subsection we examine the symmetry of the matrix-regularized action, which is the

sum of S2+1 (4.34) and Sf (4.43),

SMR = S2+1 + Sf . (4.45)

If we regard xi as the local coordinate of a general two-dimensional manifold assuming

F → R
2 or R1, R2 → 0, SMR is formally invariant under the following two-dimensional

general coordinate transformation GC(2, R),

xi → x̃i = f i(x) , (4.46)

Gij(x) → G̃ij(x̃) = M i
kM

j
l Gkl(x) , (4.47)

Ai(x) → Ãi(x̃) = Aj(x)(M−1)ji , (4.48)

A0(x) → Ã0(x̃) = A0(x) , (4.49)
(

Amn9

Amn8

)

(x) →
(

Ãmn9

Ãmn8

)

(x̃) = M

(

Amn9

Amn8

)

(x), (4.50)

Am89(x) → Ãm89(x̃) = (det M)Am89(x) , (4.51)

Amnp(x) → Ãmnp(x̃) = Amnp(x) , (4.52)

φm(x) → φ̃m(x̃) = φm(x) , (i, j, k, l = 1, 2) (4.53)
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where

M i
j

(

=
∂x̃i

∂xj

)

∈ GL(2, R) . (4.54)

Note that eq. (4.48) corresponds to GL(2, R)-transformation on the (target-space) 8-9 plane

in membrane theory.

Let us consider SL(2, R) transformation, which is a subgroup of the GC(2, R),

G̃ij(x) = Λi
k Λj

l Gkl(Λ−1x) , Ãi(x) = (Λ−1)ji Aj(Λ
−1x) , φ̃m(x) = φm(Λ−1x) , etc. ,

(4.55)

where Λ is a constant matrix of SL(2, R) parametrized by

Λ =

(

a b

c d

)

∈ SL(2, R) . (4.56)

It was shown that the type IIB superstring SL(2, R) duality (at the classical level) can

be realized as the SL(2, R) target-space rotation of 11-dimensional theory in the effective

action [30]. In particular, we can easily check that the SL(2, R) transformation can be

rewritten as (cf. appendix B)

τ̃ =
c + dτ

a + bτ
, ̃IJ = |a + bτ | IJ ,

(

B̃
(1)
IJ

B̃
(2)
IJ

)

= Λ

(

B
(1)
IJ

B
(2)
IJ

)

, D̃mnp8 = Dmnp8 , etc.,

(4.57)

where τ ≡ l + ie−ϕ is the moduli fields of a 2-torus and I, J = 1, · · · , 8.13 Notice that

this transformation is, in fact, corresponds to the type IIB superstring SL(2, R) duality.

For example, we can see that when a = d = 0, b = −c = −1 and l = 0, the SL(2, R)

transformation is reduced to the strong-weak duality ϕ̃ = −ϕ, or eϕ → 1/eϕ in the type

IIB superstring theory, which will be seen in the followings.

Next, we shall examine the type IIB string duality. Let us consider two 2-tori of (L1, L2)

and (L̃1, L̃2) whose metrics are Guv and G̃uv , respectively (see (4.1)). Then, following the

procedure in the previous subsection, we shall obtain the matrix regularized action of the

standard form of the super Yang-Mills action (4.34) in each case. We regard that those

two are to be related by a SL(2, R) transformation (4.55)–(4.56). Then, once we consider

the reduction to type IIB superstring with each 2-torus, we shall put R1 = R2 ≡ RB and

R̃1 = R̃2 ≡ R̃B as in eq. (3.13) and hence we find that the string couplings are related by

g̃b =
L̃1

L̃2

=
|G̃99|

√

det G̃uv

= |a + bτ |2 |G99|√
detGuv

= |a + bτ |2 L1

L2
= |a + bτ |2 gb . (4.58)

Furthermore, since both R1 and R̃1 correspond to ℓ11 (cf. footnote 10), the oscillation parts

of the matrices (Aα and φm) in the action are related by the SL(2, R) transformation as

13In this section, we put the spacetime metric in a block diagonal form eq. (4.1) to obtain the standard

form of Yang-Mills action eqs. (4.34) and (4.43) through the matrix regularization of wrapped membrane.

Then, eq. (4.1) leads to B
(1)
m8 = B

(2)
m8 = 0 in type IIB superstring variables (cf. appendix B). However, if we

do not stick to the standard form of Yang-Mills action and carry out the matrix regularization by keeping the

off-diagonal block non-zero, we shall see that two-dimensional general coordinate transformation GC(2, R)

leads to the third equation of (4.57) with non-zero B
(1)
m8 and B

(2)
m8, in general.
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(cf. (4.7), (4.8), (4.28) and (4.29))

exp

[

i

N

K1x
1 − K2x

2

Σ̂R

]

↔ exp

[

i

N

K1y
1 − K2y

2

˜̂
ΣR

]

(yi = (Λ−1)ij xj)

= exp

[

i

N

(dK1 + cK2)x
1 − (bK1 + aK2)x

2

Σ̂R

]

, (4.59)

where Σ̂R = α/(2πR̃R) and
˜̂
ΣR = α/(2πR̃R). In eq. (4.59) RB = R̃B has been used and

hence Σ̂1 = Σ̂2 ≡ Σ̂R =
˜̂
Σ1 =

˜̂
Σ2. We may rewrite (4.59) as the transformation of Ki’s,

K1 → K̃1 = dK1 + cK2 , (4.60)

K2 → K̃2 = bK1 + aK2 . (4.61)

Since we expect K̃i ∈ Z, we shall put restrictions on the parameters,

a, b, c, d ∈ Z ↔ Λ ∈ SL(2, Z) (4.62)

Eqs. (4.60)–(4.61) can be rewritten as the transformation of (p, q, r, s)

( p q ) → ( p̃ q̃ ) = ( p q )

(

d −b

−c a

)

= ( p q ) Λ−1 , (4.63)

( r s ) → ( r̃ s̃ ) = ( r s ) Λ−1 . (4.64)

This means that the matrices Ξ(p)(Λ
−1x) can be written by Ξ(p̃)(x), where we have added

the suffices in order to distinguish the parameters (p, q, r, s) in the matrices (cf. (4.7)–

(4.8)). Here, we should make a comment on the double dimensional reduction. From

eqs. (3.14)–(3.15), (4.24)–(4.25) and (4.7)–(4.8) we shall see that the conditions of the

double dimensional reduction which corresponds to eqs. (3.20)–(3.21) are given by (putting

R1 = R2)

pA1(x) + qA2(x) = 0 , (q∂1 − p∂2)Φ(x) = 0 , (4.65)

where Φ stands for all the matrices and background fields. Similarly, in the SL(2, R)-

transformed frame the double dimensional reduction should be done by (with R̃1 = R̃2)

p̃Ã1(x) + q̃Ã2(x) = 0 , (q̃∂1 − p̃∂2)Φ̃(x) = 0 . (4.66)

As was mentioned before, if we choose a SL(2, R)-matrix

Λ =

(

0 −1

1 0

)

∈ SL(2, R) , (4.67)

eq. (4.58) becomes

gb → g̃b = |τ |2 gb = l2gb + g−1
b , (4.68)

and eq. (4.63) leads to

( p q ) → ( p̃ q̃ ) = (−q p ) . (4.69)
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This indicates that in type IIB superstring the system of a (p, q)-string with the string

coupling gb is dual to that of a (−q, p)-string with g−1
b + l2gb. This can be seen through the

terms LB(x) ≡ 2D0φ
m(D1φ

nAmn9 +D2φ
nAmn8) in Sf (4.43). In the SL(2, R)-transformed

frame, LB is given by

L̃B(x) = 2D̃0φ̃
m(x)(D̃1φ̃

n(x)Ãmn9(x) + D̃2φ̃
n(x)Ãmn8(x))

= 2D̃0φ̃
m

{

( D̃1φ̃
n D̃2φ̃

n )Λ−1
p̃q̃ Λp̃q̃

(

Ãmn9(x)

Ãmn8(x)

)}

→ 1

nc
2D̃0φ̃

m

{

( (s̃∂1 − r̃∂2)φ̃
n 0 )

(

p̃B̃
(1)
mn + q̃B̃

(2)
mn

r̃B̃
(1)
mn + s̃B̃

(2)
mn

)}

=
2

nc
∂0φ̃

m(s̃∂1 − r̃∂2)φ̃
n (p̃B̃(1)

mn + q̃B̃(2)
mn) . (4.70)

One comment is in order: For a constant GL(2, R) matrix M = (M i
j) in eq. (4.54), the

maps corresponding to eqs. (4.58) and (4.63) are given by

gb → g̃b =
|M1

1 + M1
2 τ |2

|det M | gb , (4.71)

( p q ) → ( p̃ q̃ ) = ( p q ) M−1 . (4.72)

Finally in this subsection, we refer to two specific transformations, which are not the

elements in the SL(2, R) subgroup. First we examine the X8-reflection

M =

(

1 0

0 −1

)

∈ Z2 ⊂ O(2) . (4.73)

Then the corresponding type IIB superstring duality is given by

τ̃ = −τ̄ , ̃mn = mn , ̃8m = −8m , ̃88 = 88 ,
(

B̃
(1)
IJ

B̃
(2)
IJ

)

=

(

B
(1)
IJ

−B
(2)
IJ

)

, D̃mnp8 = Dmnp8 . (4.74)

In this case the type IIB string coupling is invariant and (p, q)-string is mapped to (p,−q)-

string under the duality. Note that D8mnp is invariant under the reflection of X8 since we

have respected the symmetry of the membrane theory. (See the discussion in ref. [31].)

Similarly, we consider the 8-9 flip

M =

(

0 1

1 0

)

∈ Z2 ⊂ O(2) . (4.75)

Then the type IIB superstring duality is given by

τ̃ =
1

τ̄
, ̃mn = |τ | mn , ̃8m = −|τ | 8m , ̃88 = |τ | 88 ,

(

B̃
(1)
IJ

B̃
(2)
IJ

)

=

(

B
(2)
IJ

B
(1)
IJ

)

, D̃mnp8 = Dmnp8 . (4.76)

This implies the (p, q)-string ↔ (q, p)-string and (in l = 0 case) the strong-weak gb ↔ g−1
b

duality.
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5. Summary and discussion

In this paper we have studied matrix regularization of the wrapped supermembrane com-

pactified on a 2-torus. We have adopted the lightcone wrapped supermembrane compact-

ified on T 2 in the curved background and the wrapping is characterized by two mutually

prime integers (p, q). We have followed the matrix regularization procedure [22] and also

applied the double dimensional reduction technique [4] properly to the matrix-regularized

action as was done in the continuous case [10]. We have succeeded in deducing explic-

itly the bosonic sector of the matrix regularized (p, q)-string action in eq. (3.39) directly

from the wrapped membrane. A BPS saturated classical solution of the (p, q)-string ac-

tion (3.39) is valid irrespective of the value of the string coupling gb, however the valid

region to treat the (p, q)-string perturbatively is still obscure and is deserved to be investi-

gated.14 We have also deduced the (2+1)-dimensional super Yang-Mills theory in a curved

background and then we have seen that it really has the symmetries which are related to

string duality [32, 1].

In this paper we have considered only classically the limit of vanishing volume of the

2-torus with the wrapped supermembrane and it is, of course, important to investigate

it quantum mechanically. In fact, quantum mechanical justification of the double dimen-

sional reduction was studied in refs. [19, 33]. In those references, the Kaluza-Klein modes

associated with the ρ-coordinate were not removed classically, but they were integrated in

the path integral formulation of the wrapped supermembrane theory. However, it is still in

the beginnings of the quantum mechanical study, and it deserves to be investigated further

with the results in this paper.

A. Notation

The target-space indices;

M,N,P,Q = 1, 2, · · · , 7, 8, 9 , (A.1)

U, V,W = 1, 2, · · · , 7, y, z , (A.2)

I, J = 1, 2, · · · , 7, 8 , (A.3)

m,n, p, q = 1, 2, · · · , 7 , (A.4)

u, v = 8, 9 . (A.5)

The worldvolume, worldsheet and spacesheet indices;

α, β = 0, 1, 2 , (A.6)

a, b = 0, 1 , (A.7)

i, j = 1, 2 . (A.8)

14Of course the (1,0)-string (F-string) is an effective mode in a weak coupling region gb ≪ 1, while the

(0,1)-string (D-string) in a strong coupling region gb ≫ 1 for l = 0.
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The target-space metrics;

GMN = Target-space transverse metric , (A.9)

G̃UV = Rotated target-space transverse metric . (A.10)

(Anti-)symmetrization r.w.t. indices;

A[µBν] =
1

2
(AµBν − AνBµ) , (A.11)

A[µBνCρ] =
1

3!
(AµBνCρ + AνBρCµ + AρBµCν

−AµBρCν − AρBνCµ − AνBµCρ) , (A.12)

A[µB|ν|Cρ] =
1

2
(AµBνCρ − AρBνCµ) , (A.13)

A{µBν} =
1

2
(AµBν + AνBµ) , etc. (A.14)

B. Background fields

From the KK relation between 11-dimensional supergravity and type IIA supergravity, the

transverse metric GMN can be written by

GMN ≡ e−
2
3
φ

(

gIJ + e2φAIAJ e2φAI

e2φAJ e2φ

)

=

(

1√
G99

gIJ + 1
G99

GI9GJ9 GI9

GJ9 G99

)

=







1√
G99

gmn + 1
G99

Gm9Gn9
1√
G99

gm8 + 1
G99

Gm9G89 Gm9

1√
G99

g8n + 1
G99

G89Gn9
1√
G99

g88 + 1
G99

G89G89 G89

Gn9 G89 G99






, (B.1)

and the third-rank antisymmetric tensor AMNP is decomposed as

AMNP = (Amnp, Amn9, Amn8, Am89)

= (Cmnp, Bmn, Cmn8, Bm8) . (B.2)

– 22 –



J
H
E
P
1
0
(
2
0
0
7
)
0
5
3

Those fields are related to those of IIB as,

gmn = mn − 8m8n − B
(1)
8mB

(1)
8n

88
, (B.3)

g8m =
B

(1)
8m

88
, (B.4)

g88 =
1

88
, (B.5)

Cmn8 = B(2)
mn +

2B
(2)
8[mn]8

88
, (B.6)

Cmnp = D8mnp +
3

2
ǫijB

(i)
8[m B

(j)
np] +

3

2
ǫij

B
(i)
8[m B

(j)
n|8|p]8

88
, (B.7)

Bmn = B(1)
mn +

2B
(1)
8[mn]8

88
, (B.8)

B8m =
8m

88
, (B.9)

Am = −B
(2)
8m + lB

(1)
8m , (B.10)

A8 = l , (B.11)

φ = ϕ − 1

2
ln 88 . (B.12)

The modular field of a 2-torus is defined by τ ≡ l + i e−ϕ and can be rewritten as

τ =
G89 + i

√
VT 2

G99
, (B.13)

where VT 2 ≡ G99G88 − (G89)
2.

On the other hand, the 8-9 rotated metric is given by (U, V = 1, · · · , 7, y, z)

G̃UV = GMN
∂XM

∂XU

∂XN

∂XV

=









1√
G̃zz

g̃mn + 1
G̃zz

G̃mzG̃nz
1√
G̃zz

g̃my + 1
G̃zz

G̃mzG̃yz G̃mz

1√
G̃zz

g̃yn + 1
G̃zz

G̃yzG̃nz
1√
G̃zz

g̃yy + 1
G̃zz

G̃yzG̃yz G̃yz

G̃nz G̃yz G̃zz









. (B.14)

When we choose an SO(2) rotation as in eq. (3.15) the background metric on a 2-torus

is given by

G̃zz = q̂2 G88 + 2p̂q̂ G89 + p̂2 G99 , (B.15)

G̃yy = p̂2 G88 − 2p̂q̂ G89 + q̂2 G99 , (B.16)

G̃yz = p̂q̂ G88 + (p̂2 − q̂2)G89 − p̂q̂ G99 . (B.17)
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The background metric on the 2-torus is rewritten by the fields of type IIB superstring

theory,

G99 = e4ϕ/3
−2/3
88 , (B.18)

G89 = e4ϕ/3
−2/3
88 l , (B.19)

G88 = e4ϕ/3
−2/3
88 (l2 + e−2ϕ) , (B.20)

G̃zz = e4ϕ/3
−2/3
88

{

(p̂ + q̂l)2 + e−2ϕq̂2
}

, (B.21)

G̃yz = e4ϕ/3
−2/3
88

{

(p̂l − q̂)(q̂l + p̂) + p̂q̂e−2ϕ
}

, (B.22)

G̃yy = e4ϕ/3
−2/3
88

{

(q̂ − p̂l)2 + p̂2e−2ϕ
}

. (B.23)

Note that
√

G̃zz

G99
=

√

(p̂ + q̂l)2 + e−2ϕq̂2 . (B.24)

Furthermore,

G̃my =
1

√

G̃zz

g̃my +
1

G̃zz

G̃mzG̃yz . (B.25)

and hence the 9-dimensional metric is also rewritten by

g̃my =
1

√

G̃zz

(

G̃myG̃zz − G̃mzG̃yz

)

=
p̂ B

(1)
8m + q̂ B

(2)
8m

88
√

(p̂ + q̂l)2 + e−2ϕq̂2
. (B.26)

Furthermore, we shall calculate g̃mn, g̃yy as follows. The equation,

G̃yy =
1

√

G̃zz

g̃yy +
1

G̃zz

G̃yzG̃yz , (B.27)

leads to

g̃yy =
1

√

G̃zz

(

G̃yyG̃zz − G̃yzG̃yz

)

=
1

88
√

(p̂ + q̂l)2 + e−2ϕq̂2
. (B.28)

Similarly

Gmn =
1

√

G̃zz

g̃mn +
1

G̃zz

G̃mzG̃nz , (B.29)

leads to

g̃mn =
1

√

G̃zz

(

GmnG̃zz − G̃mzG̃nz

)

=
√

(p̂ + q̂l)2 + e−2ϕq̂2

(

mn − 8m8n

88
+

(p̂B
(1)
8m + q̂B

(2)
8m)(p̂B

(1)
8n + q̂B

(2)
8n )

88 {(p̂ + q̂l)2 + e−2ϕq̂2}

)

=
√

(p̂ + q̂l)2 + e−2ϕq̂2

(

mn − 8m8n

88
+

B
(pq)
8m B

(pq)
8n

88

)

. (B.30)
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